SET	A

INDIAN SCHOOL MUSCAT
FINAL EXAMINATION 2023
086 SCIENCE
CLASS IX

MARKING SCHEME
TOTAL MARKS :80

SECTION - A		
1.	Examples of non-uniform acceleration: a ball thrown upwards and falling back, a car going around a curve, and an object affected by gravity.	1
2.	Displacement	1
3.	Universal gravitational constant, G is independent of the nature of the particle, medium between the particles, and time. Its value is constant anywhere in the Universe, and hence it's called 'Universal'.	1
4.	The law of conservation of energy states that the amount of energy is neither created nor destroyed. For example, when you roll a toy car down a ramp and it hits a wall, the energy is transferred from kinetic energy to potential energy.	1
5.	The work done is said to be negative work when force and displacement are in opposite direction. Example: When an object is thrown upwards, the force of gravity is in downward direction whereas displacement acts in upward direction.	1
6.	At compressions	1
7.	Greater than $20,000 \mathrm{~Hz}$	1
17	(a) A Both \mathbf{A} and \mathbf{R} are true and R is the correct explanation of A	
Section - B		
23	Speed is the time rate at which an object is moving along a path, while velocity is the rate and direction of an object's movement. Or any two differences OR $\begin{aligned} & \mathrm{u}=0 \quad \mathrm{v}=40 \mathrm{kmph}=40 \times 5 / 18=11.11 \mathrm{~m} / \mathrm{s} \quad \mathrm{t}=10 \times 60=600 \mathrm{~s} \\ & \mathrm{a}=\mathrm{v}-\mathrm{u} / \mathrm{t} \\ &=(11.11-0) / 600 \end{aligned}$ the acceleration of the train is $0.018 \mathrm{~m} \mathrm{~s}^{-2}$.	$\begin{aligned} & 1+1 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
24	(i) Inertia, property of a body by virtue of which it opposes any agency that attempts to put it in motion or, if it is moving, to change the magnitude or direction of its velocity. (ii) (a) Stone (b) train	2
27	i) Newton's second law of motion - Magnitude of applied force is equal to rate of change of momentum (if $\mathbf{F}=\mathbf{m a}$, or force is equal to mass times acceleration. Is given give $1 / 2 \mathrm{marks}$) (ii) Here, Mass of vehicle, $\mathrm{m}=1500 \mathrm{~kg}$ And, Acceleration, $\mathrm{a}=-1.7^{{f89c71666-cd83-455b-93b3-2a11d63ef3bf}}$ Now, Force, F=m x a $\begin{aligned} & \mathrm{F}=1500 \times x(-1.7) \mathrm{N}^{-} \\ & \mathrm{F}=-2550 \mathrm{~N}^{-} \end{aligned}$ Thus, the force between the vehicles and the road is $\mathbf{2 5 5 0}$ Newton's.	$\begin{aligned} & 11 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$

28	Any Three Difference between Transverse and Longitudinal Waves OR The relationship of the speed of sound, its frequency, and wavelength for a wave. wave speed = Distance / time Distance covered in oscillation $=\lambda$ Time taken in oscillation $=\mathrm{T}$ $\begin{aligned} & \mathrm{v}=\lambda / \mathrm{T} \quad \text { put } \mathrm{f}=1 / \mathrm{T} \\ & \mathrm{v}=\mathrm{f} \lambda \end{aligned}$	$\begin{aligned} & \hline 1+1+1 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 \\ & 1 / 2 \\ & \hline \end{aligned}$
35	(i) Statement of State universal law of gravitation $\mathbf{F}=\mathbf{G}\left(\mathbf{m}_{1} \mathrm{~m}_{2}\right) / \mathbf{R}^{2}$. (ii) acceleration due to gravity on earth $=\mathrm{g}$ Weight of body on earth $\mathrm{W}=\mathrm{mg}$ acceleration due to gravity on moon $\mathrm{g}_{\mathrm{m}}=\mathrm{g} / 6$ Weight of body on moon $\mathrm{W}_{\mathrm{m}}=\mathrm{mg}_{\mathrm{m}}=\mathrm{mg} / 6=\mathrm{W} / 6$	$\begin{array}{\|l\|} \hline 2 \\ 1 \end{array}$ 1 1
37	a) The energy possessed by a body by virtue of its specific position (or changed configuration) is called the potential energy. b) Joule c) $\mathrm{W}=\mathrm{mgh}=5 \times 10 \times 10=500 \mathrm{~J}$ (Or) $\mathrm{W}=\mathrm{mgh}=5 \times 10 \times 10=500 \mathrm{~J}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 / 2+ \\ 11 / 2 \end{array}$

INDIAN SCHOOL MUSCAT
FINAL EXAMINATION 2023
086 SCIENCE CLASS IX

MARKING SCHEME
TOTAL MARKS :80

SECTION - A		
1.	The movement of a body following a circular path is called a circular motion. Now, the motion of a body moving with constant speed along a circular path is called Uniform Circular Motion. Here, the speed is constant but the velocity changes.	1
2.	C)	1
3.	When a body moves exclusively under the influence of the Earth's gravity, it is said to be in freefall. The motion of the ball will be accelerated as a result of external force acting on it. This free-fall acceleration is also known as acceleration due to gravity.	1
4.	1:2	1
5.	The work done is said to be negative work when force and displacement are in opposite direction. Example: When an object is thrown upwards, the force of gravity is in downward direction whereas displacement acts in upward direction.	1
6.	Pitch of the sound depends upon its frequency. As the pitch of the sound is directly proportional to frequency, Low-frequency sounds are said to have low pitch whereas sounds of high frequency are said to have the high pitch.	1
7.	Reflection of sound is used to measure the speed and distance of underwater objects. This method is called SONAR. Working of a stethoscope - the sound of patient's heartbeat reaches the doctor's ear through multiple reflections of sound.	1
17	(a) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}	
23	Speed is the time rate at which an object is moving along a path, while velocity is the rate and direction of an object's movement. Or any two differences OR $\begin{aligned} & u=0 \quad v=40 \mathrm{kmph}=40 \times 5 / 18=11.11 \mathrm{~m} / \mathrm{s} \quad \mathrm{t}=10 \times 60=600 \mathrm{~s} \\ & \mathrm{a}=\mathrm{v}-\mathrm{u} / \mathrm{t} \\ &=(11.11-0) / 600 \end{aligned}$ the acceleration of the train is $0.0185 \mathrm{~m} \mathrm{~s}^{-2}$.	$\begin{aligned} & \hline 1+1 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
24	(i) Inertia, property of a body by virtue of which it opposes any agency that attempts to put it in motion or, if it is moving, to change the magnitude or direction of its velocity. (ii) (a) Stone (b) train	1 $1 / 2+1 / 2$
27	i) Newton's second law of motion - Magnitude of applied force is equal to rate of change of momentum (if $\mathbf{F}=\mathbf{m a}$, or force is equal to mass times acceleration written, give $1 / 2$ marks) (ii) Here, Mass of vehicle, $\mathrm{m}=1500 \mathrm{~kg}$ And, Acceleration, $\mathrm{a}=-1.7^{{fc8459315-dd05-4d0a-a4d8-df5c37db982b}}$	$11 / 2$

	Now, Force, $\mathrm{F}=\mathrm{m} \mathrm{x} \mathrm{a}$ $\begin{aligned} & \mathrm{F}=1500 \times x(-1.7) \mathrm{N}^{-} \\ & \mathrm{F}=-2550 \mathrm{~N}^{-} \end{aligned}$ Thus, the force between the vehicles and the road is $\mathbf{2 5 5 0}$ Newton's.	$\begin{array}{\|l\|} \hline 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ \hline \end{array}$
28	Any Three Difference between \quad Transverse and Longitudinal WavesORThe relationship of the speed of sound, its frequency, and wavelength for a wave. wave speed = Distance / time Distance covered in oscillation $=\lambda$ Time taken in oscillation $=\mathrm{T}$ $\mathrm{v}=\lambda / \mathrm{T} \quad$ put $\quad \mathrm{f}=1 / \mathrm{T}$ $\mathrm{v}=\mathrm{f} \lambda$	$\begin{array}{\|l\|} \hline 1+1+1 \\ \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 \\ 1 / 2 \end{array}$
35	(i) Statement of State universal law of gravitation $\mathbf{F}=\mathbf{G}\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right) / \mathbf{R}^{2}$. (ii) acceleration due to gravity on earth $=g$ Weight of body on earth $\mathrm{W}=\mathrm{mg}$ acceleration due to gravity on moon $g_{m}=g / 6$ Weight of body on moon $\mathrm{W}_{\mathrm{m}}=\mathrm{mg}_{\mathrm{m}}=\mathrm{mg} / 6=\mathrm{W} / 6$	$\begin{aligned} & \hline 2 \\ & 1 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$
37	a) The energy possessed by a body by virtue of its specific position (or changed configuration) is called the potential energy. b) Joule c) (c) W $=\mathrm{mg} \mathrm{h}=5 \times 10 \times 10=500 \mathrm{~J}$ (Or) $\mathrm{W}=\mathrm{mgh}=5 \times 10 \times 10=500 \mathrm{~J}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 / 2 \\ +11 / 2 \end{array}$

SET	C

INDIAN SCHOOL MUSCAT
FINAL EXAMINATION 2023
086 SCIENCE
CLASS IX

MARKING SCHEME
TOTAL MARKS :80

SECTION - A		
1.	Greater than $20,000 \mathrm{~Hz}$	1
2.	C)	1
3.	At Compressions.	1
4.	The work done is said to be negative work when force and displacement are in opposite direction. Example: When an object is thrown upwards, the force of gravity is in downward direction whereas displacement acts in upward direction.	1
5.	The movement of a body following a circular path is called a circular motion. Now, the motion of a body moving with constant speed along a circular path is called Uniform Circular Motion. Here, the speed is constant but the velocity changes.	1
6.	The law of conservation of energy states that the amount of energy is neither created nor destroyed. For example, when you roll a toy car down a ramp and it hits a wall, the energy is transferred from kinetic energy to potential energy.	1
7.	When a body moves exclusively under the influence of the Earth's gravity, it is said to be in freefall. The motion of the ball will be accelerated as a result of external force acting on it. This free-fall acceleration is also known as acceleration due to gravity.	1
17	(a) Both A and R are true and R is the correct explanation of A	
23	Speed is the time rate at which an object is moving along a path, while velocity is the rate and direction of an object's movement. Or any two differences OR $\begin{aligned} & u=0 \quad v=40 \mathrm{kmph}=40 \times 5 / 18=11.11 \mathrm{~m} / \mathrm{s} \quad \mathrm{t}=10 \times 60=600 \mathrm{~s} \\ & \mathrm{a}=\mathrm{v}-\mathrm{u} / \mathrm{t} \\ &=(11.11-0) / 600 \end{aligned}$ the acceleration of the train is $0.0185 \mathrm{~m} \mathrm{~s}^{-2}$.	$\begin{array}{\|l\|} \hline 1+1 \\ \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ \hline \end{array}$
24	(i) Inertia, property of a body by virtue of which it opposes any agency that attempts to put it in motion or, if it is moving, to change the magnitude or direction of its velocity. (ii) (a) Stone (b) train	$\begin{aligned} & 1 \\ & 1 / 21 / 2 \end{aligned}$
27	i) Newton's second law of motion - Magnitude of applied force is equal to rate of change of momentum (if $\mathbf{F}=\mathbf{m a}$, or force is equal to mass times acceleration. Is given give $1 / 2$ marks) (ii) Here, Mass of vehicle, $\mathrm{m}=1500 \mathrm{~kg}$ And, Acceleration, $\mathrm{a}=-1.7^{{ff73a9dde-2980-4563-8fde-612d79d0c9b6}}$ Now, Force, $\mathrm{F}=\mathrm{m} x$ a $\begin{aligned} & \mathrm{F}=1500 \times x(-1.7) \mathrm{N}^{-} \\ & \mathrm{F}=-2550 \mathrm{~N}^{-} \end{aligned}$ Thus, the force between the vehicles and the road is $\mathbf{2 5 5 0}$ Newton's.	$\begin{array}{\|c\|} \hline 11 / 2 \\ \\ \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \end{array}$

28	Any Three Difference Between Longitudinal and Transverse Wave (or) The relationship of the speed of sound, its frequency, and wavelength for a wave. wave speed = Distance $/$ time Distance covered in oscillation $=\lambda$ Time taken in oscillation $=\mathrm{T}$ $\begin{aligned} & \mathrm{v}=\lambda / \mathrm{T} \quad \text { put } \quad \mathrm{f}=1 / \mathrm{T} \\ & \mathrm{v}=\mathrm{f} \lambda \end{aligned}$	$\begin{aligned} & 1+1+1 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
35	(i) Statement of State universal law of gravitation $\mathbf{F}=\mathbf{G}\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right) / \mathbf{R}^{2}$. (ii) acceleration due to gravity on earth $=g$ Weight of body on earth $\mathrm{W}=\mathrm{mg}$ acceleration due to gravity on moon $g_{m}=\mathrm{g} / 6$ Weight of body on moon $\mathrm{W}_{\mathrm{m}}=\mathrm{mg}_{\mathrm{m}}=\mathrm{mg} / 6=\mathrm{W} / 6$	$\begin{array}{\|l\|} \hline 2 \\ 1 \\ 1 / 2 \\ 1 / 2 \\ 1 \\ \hline \end{array}$
37	a) The energy possessed by a body by virtue of its specific position (or changed configuration) is called the potential energy. b) Joule c) (c) $\mathrm{W}=\mathrm{mg} \mathrm{h}=5 \times 10 \times 10=500 \mathrm{~J}$ (Or) $\mathrm{W}=\mathrm{mgh}=5 \times 10 \times 10=500 \mathrm{~J}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 / 2 \\ & +11 / 2 \end{aligned}$

