

INDIAN SCHOOL MUSCAT FINAL EXAMINATION 2023 086 SCIENCE CLASS IX

MARKING SCHEME

TOTAL MARKS:80

SECTION - A		
1.	Examples of non-uniform acceleration: a ball thrown upwards and falling back, a car	1
	going around a curve, and an object affected by gravity.	
2.	Displacement	1
3.	Universal gravitational constant, G is independent of the nature of the particle, medium	1
	between the particles, and time. Its value is constant anywhere in the Universe , and hence it's called 'Universal'.	
4.	The law of conservation of energy states that the amount of energy is neither created nor	1
	destroyed . For example, when you roll a toy car down a ramp and it hits a wall, the energy is	
	transferred from kinetic energy to potential energy.	
5.	The work done is said to be negative work when force and displacement are in opposite	1
	direction . Example: When an object is thrown upwards, the force of gravity is in downward	
	direction whereas displacement acts in upward direction.	
6.	At compressions	1
7.	Greater than 20,000Hz	1
17	(a) A Both A and R are true and R is the correct explanation of A	
	Section - B	
23	Speed is the time rate at which an object is moving along a path, while velocity is the	1+1
	rate and direction of an object's movement. Or any two differences	
	OR	
	u = 0 $v = 40$ kmph $= 40$ x $5/18 = 11.11$ m/s $t = 10$ x $60 = 600$ s	1/2
	a = v-u/t	1/2
	=(11.11 - 0)/600	1/2
	the acceleration of the train is 0.018 m s^{-2} .	1/2
24	(i) Inertia, property of a body by virtue of which it opposes any agency that attempts to	2
	put it in motion or, if it is moving, to change the magnitude or direction of its velocity.	
	(ii) (a) Stone (b) train	
27	i) Newton's second law of motion – Magnitude of applied force is equal to rate of change of	11/2
	momentum	
	(if $F = ma$, or force is equal to mass times acceleration. Is given give $\frac{1}{2}$ marks)	
	(ii) Here, Mass of vehicle, m=1500 kg And, Acceleration, a =-1.7 `ms^(2)`	
	Now, Force, F=m x a	1/2
	F=1500xx(-1.7)N	1/2
	F=-2550N`	1/2
	Thus, the force between the vehicles and the road is 2550 Newton's .	

28	Any Three Difference between Transverse and Longitudinal Waves	1+1+1
	OR	
	The relationship of the speed of sound, its frequency, and wavelength for a wave.	
	wave speed = Distance / time	1/2
	Distance covered in oscillation = λ	1/2
	Time taken in oscillation $=$ T	1/2
	$v = \lambda/T$ put $f = 1/T$	1
	$v = f \lambda$	1/2
35	(i) Statement of State universal law of gravitation	2
	$\mathbf{F} = \mathbf{G}(\mathbf{m}_1 \mathbf{m}_2) / \mathbf{R}^2.$	1
	(ii) acceleration due to gravity on earth = g	
	Weight of body on earth $W = mg$	1
	acceleration due to gravity on moon $g_m = g/6$	
	Weight of body on moon $W_m = mg_m = mg/6 = W/6$	1
37	a) The energy possessed by a body by virtue of its specific position (or changed	1
	configuration) is called the potential energy.	
	b) Joule	1
	c) $W = m g h = 5 x 10 x 10 = 500 J$	1/2 +
	(Or)	11/2
	W = m g h = 5 x 10 x 10 = 500 J	

INDIAN SCHOOL MUSCAT FINAL EXAMINATION 2023 086 SCIENCE CLASS IX

MARKING SCHEME

TOTAL MARKS:80

SECTION - A		
1.	The movement of a body following a circular path is called a circular motion. Now, the motion of a body moving with constant speed along a circular path is called Uniform	1
2.	Circular Motion. Here, the speed is constant but the velocity changes. C)	1
3.	When a body moves exclusively under the influence of the Earth's gravity, it is said to be in freefall. The motion of the ball will be accelerated as a result of external force acting on it. This free-fall acceleration is also known as acceleration due to gravity.	1
4.	1:2	1
5.	The work done is said to be negative work when force and displacement are in opposite direction . Example: When an object is thrown upwards, the force of gravity is in downward direction whereas displacement acts in upward direction.	1
6.	Pitch of the sound depends upon its frequency . As the pitch of the sound is directly proportional to frequency, Low-frequency sounds are said to have low pitch whereas sounds of high frequency are said to have the high pitch.	1
7.	Reflection of sound is used to measure the speed and distance of underwater objects . This method is called SONAR. Working of a stethoscope – the sound of patient's heartbeat reaches the doctor's ear through multiple reflections of sound.	1
17	(a) Both A and R are true and R is the correct explanation of A	
23	Speed is the time rate at which an object is moving along a path, while velocity is the rate and direction of an object's movement. Or any two differences OR	1+1
	u=0 $v=40$ kmph = 40 x $5/18 = 11.11$ m/s $t=10$ x $60 = 600$ s	1/2
	a = v-u/t	1/2
	= (11.11 -0)/600	1/2
	the acceleration of the train is 0.0185 m s^{-2} .	1/2
24	(i) Inertia, property of a body by virtue of which it opposes any agency that attempts	1
	to put it in motion or, if it is moving, to change the magnitude or direction of its	
	velocity.	1/ .1/
	(ii) (a) Stone (b) train	1/2 +1/2
27	i) Newton's second law of motion – Magnitude of applied force is equal to rate of change of momentum	1½
	(if F = ma, or force is equal to mass times acceleration written, give ½ marks) (ii) Here, Mass of vehicle, m=1500 kg And, Acceleration, a =-1.7 \`ms^(2)\`	

	Now, Force, F=m x a	1/2
	F=1500xx(-1.7)N	
	F=-2550N`	1/2
	Thus, the force between the vehicles and the road is 2550 Newton's .	1/2
28	Any Three Difference between Transverse and Longitudinal Waves	1+1+1
	OR	
	The relationship of the speed of sound, its frequency, and wavelength for a wave.	
	wave speed = Distance / time	1/2
	Distance covered in oscillation = λ	1/2
	Time taken in oscillation $=$ T	1/2
	$v = \lambda/T$ put $f = 1/T$	1
	$v = f \lambda$	1/2
35	(i) Statement of State universal law of gravitation	2
	$\mathbf{F} = \mathbf{G}(\mathbf{m}_1 \mathbf{m}_2) / \mathbf{R}^2.$	1
	(ii) acceleration due to gravity on earth = g	
	Weight of body on earth $W = mg$	1/2
	acceleration due to gravity on moon $g_m = g/6$	1/2
	Weight of body on moon $W_m = mg_m = mg/6 = W/6$	1
37	a) The energy possessed by a body by virtue of its specific position (or changed	1
	configuration) is called the potential energy.	
	b) Joule	1
	c) (c) $W = m g h = 5 x 10 x 10 = 500 J$	1/2
	(Or)	+11/2
	W = m g h = 5 x 10 x 10 = 500 J	

INDIAN SCHOOL MUSCAT FINAL EXAMINATION 2023 086 SCIENCE CLASS IX

MARKING SCHEME

TOTAL MARKS:80

SECTION - A		
1.	Greater than 20,000Hz	1
2.	(C)	1
3.	At Compressions.	1
4.	The work done is said to be negative work when force and displacement are in opposite direction . Example: When an object is thrown upwards, the force of gravity is in downward direction whereas displacement acts in upward direction.	1
5.	The movement of a body following a circular path is called a circular motion. Now, the motion of a body moving with constant speed along a circular path is called Uniform Circular Motion. Here, the speed is constant but the velocity changes.	1
6.	The law of conservation of energy states that the amount of energy is neither created nor destroyed . For example, when you roll a toy car down a ramp and it hits a wall, the energy is transferred from kinetic energy to potential energy.	1
7.	When a body moves exclusively under the influence of the Earth's gravity, it is said to be in freefall. The motion of the ball will be accelerated as a result of external force acting on it. This free-fall acceleration is also known as acceleration due to gravity.	1
17	(a) Both A and R are true and R is the correct explanation of A	
23	Speed is the time rate at which an object is moving along a path, while velocity is the rate and direction of an object's movement. Or any two differences OR	1+1
	$u=0 v=40 \text{ kmph} = 40 \text{ x } 5/18 = 11.11 \text{ m/s} \qquad t=10 \text{ x } 60 = 600 \text{ s}$ $a=v-u/t$ $= (11.11 - 0)/600$ the acceleration of the train is 0.0185 m s^{-2} .	1/2 1/2 1/2 1/2
24	(i) Inertia, property of a body by virtue of which it opposes any agency that attempts to	1
	put it in motion or, if it is moving, to change the magnitude or direction of its velocity. (ii) (a) Stone (b) train	1/2 1/2
27	i) Newton's second law of motion – Magnitude of applied force is equal to rate of change of momentum (if F = ma, or force is equal to mass times acceleration. Is given give ½ marks) (ii) Here, Mass of vehicle, m=1500 kg And, Acceleration, a =-1.7 `ms^(2)` Now, Force, F=m x a	1½
	F=1500xx(-1.7)N` F=-2550N` Thus, the force between the vehicles and the road is 2550 Newton's .	1/ ₂ 1/ ₂

28	Any Three Difference Between Longitudinal and Transverse Wave	1+1+1
	(or)	
	The relationship of the speed of sound, its frequency, and wavelength for a wave.	
	wave speed = Distance / time	
	Distance covered in oscillation = λ	1/2
	Time taken in oscillation = T	1/2
	$v = \lambda/T$ put $f = 1/T$	1/2
	$v = f \lambda$	1/2
35	(i) Statement of State universal law of gravitation	2
	$\mathbf{F} = \mathbf{G}(\mathbf{m}_1\mathbf{m}_2)/\mathbf{R}^2.$	1
	(ii) acceleration due to gravity on earth = g	
	Weight of body on earth $W = mg$	1/2
	acceleration due to gravity on moon $g_m = g/6$	1/2
	Weight of body on moon $W_m = mg_m = mg/6 = W/6$	1
37	a) The energy possessed by a body by virtue of its specific position (or changed	1
	configuration) is called the potential energy.	
	b) Joule	1
	c) (c) $W = m g h = 5 \times 10 \times 10 = 500 J$	
	(Or)	1/2
	W = m g h = 5 x 10 x 10 = 500 J	+11/2